
With fluctuating resource prices, a disrupted 
supply chain, a push for greener, sustainable, 
efficient operation, and a dramatic up-tick 

in digital adoption, operators are being challenged to 
dramatically reduce operating costs (40%), site staffing 
(60 - 80%), emissions (net zero), and safety incidents 
(zero).

Furthermore, they are being tasked with 
accomplishing this while simultaneously improving 
production throughput and availability (plus 10%). 

From Wood’s asset lifecycle experience across 
multiple sectors and geographies, and more 
formally through its 2022 Global Survey, the 
company has identified six steps that will 
strongly influence the successful design and 
implementation of impactful predictive 
maintenance at scale.

Step 1. Clearly 

In a competitive commodity market, 
industrial operators are setting ambitious 
transformational agendas to move their 
businesses into the digital age. In fact, 60% 
of companies Wood surveyed are undergoing 
significant business transformation over the 
next five years targeting the following areas.

� Targeting up to 10% uplifts in production
from the same assets.

� Decreasing operating costs by up to 40%.

� Targeting zero safety incidents and net zero emissions.

Alesio Lanzara (Australia), Peter Carydias (Australia), Hardeep 
Dhaliwal (US), and Numan Mir (UK), Wood, set out an end-to-
end framework that can help LNG industry operators maximise 
the value of predictive maintenance and move towards the 
remotely operated, autonomous plant. 

https://woodplc.com/maint-ai?utm_source=lng_industry&utm_medium=article&utm_campaign=apo_maint_ai
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Understanding the value basis of the transformation 
through a comprehensive business case is essential to 
identify and realise the full value of a transformation. 

Independent project analysis has identified that a 
staggering 43% of the sanctioned project value is typically 
lost over the life of oil and gas projects, approximately 70% 
of this (around 30% of NPV erosion in total) due to 
production shortfall. 

Wood conducted surveys and operational analysis of two 
main project phases to reveal major drivers of value erosion 
and identified which can be mitigated at scale.

Commissioning and early-stage 
operations
Wood’s research suggested that approximately 66% of 
early-stage operations issues can be identified and resolved 
through robust data-driven maintenance techniques, having 
a direct impact on production.

The company’s experience with clients reveals that 
small-bore piping, mechanical seals, thermowell failures, as 
well as generic strategy application and poor predictive 
maintenance setups round up the top 10.

Due to the transient and 
dynamic nature of operation, a 
large breadth of failure modes 
will be experienced. This 
presents both an opportunity 
for mitigation via tactical 
deployments of sensors and 
models, as well as the 
measurement and storage of 
the failure data for training and 
validation purposes.

Steady-state 
operations
Rotating equipment is 
the number one source 
of production deferments 
(approximately 60%), 
maintenance (approximately 
21%), and carbon emission 

intensity (approximately 65%).
Compressors, turbines, 

pumps, valves, and 
instrumentation rank poorly 
across both an analysis of 
production deferment and 
maintenance intensity, with 
typical maintenance profiles 
revealing an increase in 
maintenance backlogs and 
forelogs, a sign of an 
organisation in a reactive state, 
both from strategy and 
maintenance response. 
Typically, critical pumps and 
instrumentation are designed 
to have significant redundancy 
to maintain plant and system 
level reliability, so it is not 

expected to see impacts of this magnitude at plant level, 
pointing to maintenance execution and backlog challenges. 

There is a clear dynamic interplay between production 
trips or deferments and emissions intensity, as McKinsey 
identifies approximately 70% of flaring related emissions 
are due to trip/failure events.

Taking these inputs, Wood estimates the predictive 
maintenance business case to be worth a discounted value 
of US$300 million over 25 years for an LNG plant 
producing 5 million tpy, as outlined in Figure 1.

Step 2. Set up a dynamic 
philosophy, system, and 
organisation
Wood has found that typical asset management setups 
are not initially configured to take advantage of the 
latest technology and data streaming from operations; for 
example, in the company’s approach, sensor data directly 
driving resourcing and inventory management decisions.

Modules are operating independently, aligned with 
functional silos, and there is a gap in the understanding of 

Figure 1. LNG train transformation discounted benefit of approximately US$300 million 
over 25 years. Plant size = approximately 5 million tpy, maintenance budget = approximately 
US$20 million/y, operation budget = approximately US$30 million/y, 0.25 million t CO2e/y 
from flaring, 1.25 million t CO2e/y from gas turbines, average CO2 price of US$60/t, assume 
approximately 70% of flaring is due to unplanned flaring, assumed plant is 95% reliable, 
average LNG price of US$8/million Btu.

Figure 2. Shifting to dynamic operating and maintenance strategies to continuously 
optimise throughout the asset’s life.
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the optimisation needed to achieve greater asset 
performance.

The data used to simulate system performance 
is usually from generic data sources e.g. , OREDA 
with various assumptions baked in. This is often 
justified based on the belief that predictive 
analytics models need time to learn in operations 
before being productive. 

And there is a lack of attention to 
organisational context used to support the data, 
such as the asset management maturity, the type of 
maintenance strategy used, the utilisation of 
equipment, the organisational setup, and the nature 
of the vendors and manufacturers involved.

This does not adequately prepare assets for the 
range of potential issues that can be experienced 
through these stages and where optimisation 
opportunities lie.

Wood recommends leveraging information 
collected from existing operations and industry 
knowledge bases to initialise models to detect 
component failure.

Understand how a production 
operations asset creates value 
from its operations, maintenance, 
and supply chain functions  
By mapping out the current processes across the 
intelligent asset management opportunity space, 
Wood’s workflows reduce the time to insights and 
close loops in organisational processes to bring 
returns with reduced need for human capital.    

Once the appropriate scenarios have been 
accounted for, models can be configured for 
operational deployment to process live dynamic 
inputs from PdM models summarising component 
reliability statistics and predictive maintenance 
model outputs, aggregated to the equipment, 
system, plant, and organisational level. Feeding 
PdM models as input allows the ability to uncover 
opportunity to debottleneck and improve 
availability in real-time.

Feed this back into the next capital project to 
establish a competitive advantage in project 
selection.

For example: reliability, availability, and 
maintainability (RAM) models taking into account 
differences in operations throughout the stages of 
the project lifecycle e.g. , start-up/early stage 
operations, steady-state and end-of-life, and sensor 
and field data driving resourcing and inventory 
management decisions.

Step 3. Be proactive with operating 
technology infrastructure and data 
strategy
Once the commitment to a high-value business initiative 
has been made, it is critical to define data types, bandwidth, 
latency, and mobility requirements to unlock step-out 
operational performance.

This enables robust operational technology (OT) and 
information technology (IT) technoeconomic assessments, 
including infrastructure sizing, organisational structures and 
competencies, and productive contract negotiation with 
vendors.

For instance, for a set of rotating equipment for an 
industrial plant, Wood has identified the following critical 
failure detection parameters that are required.

Figure 3. Techno-economic assessment example enabling robust 
operational technology (OT)/information technology (IT) infrastructure 
cost sizing and contract negotiating power with vendors.
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Vibration
Approximately 70% of equipment failure components can be 
identified from analysis of the detailed time-waveform (TWF) 
and frequency spectrum, with potential failure (P-F) horizon 
lead times of six to 12 months in most cases. Measurements 
taken across the machine in displacement, velocity, and 
acceleration reveal machinery dynamics and behaviour. 
A dense vibration sample can contain up to 1 Mb per 
measurement point (analogous to an audio file), which forces 
a trade-off between transmission rates, sensor battery power, 
and the OT infrastructure to support this.

Fuel and lubricants
Monitoring critical fuel and lubricant parameters can 
assist with identifying root causes of tribological and 
performance-related issues e.g., viscosity and water content, 
as well as serving as a secondary diagnostic parameter 
to identify failures through oil debris analysis. Given that 
an oil sample can contain as many as 25 parameters that 
require separate test methods, fixed sensors focusing on 
contamination control could be very cost effective, given it is 
a root cause of >80% of tribological failures. Each of these 
parameters are typically floating point, therefore including 
sample sizes up to 50 bits.

Performance
Detailed equipment parameters such as flow, pressure, 
temperature, power, speed, and current are used to inform 
thermodynamic modelling that can improve both top-line 
operational performance (overall power output, throughput), 
efficiency (emissions, fuel consumption), and maintenance 
(filters, water-washing, seals). Like the parameters for fuel 
and lubricants, these typically each consist of sample sizes 
up to 50 bits.

Visual imaging
Images or videos of the equipment have traditionally been 
taken by operators and maintainers through daily patrols 

or rounds – to inspect operating equipment where there 
are monitoring technology gaps as well as conducting 
changeovers, etc. However, with increasing automation, 
footage can be captured via fixed CCTV cameras or other 
in-field mobility solutions. A 1080 p compressed image size 
is approximately 0.5 MB (4 Mb), and similarly to the vibration 
data, for the purposes of targeted predictive maintenance 
will not be required at high frequencies, especially with other 
available information. 

An understanding of optimal data collection parameters 
required to implement PdM workflows informs an optimal 
technology strategy regarding the adoption of sensors and 
overarching IT/OT infrastructure (e.g., private LTE/5G in 
high-value mobile use cases, the expansion of industrial Wi-Fi, 
or extended use of wireless sensor networks such as 
WirelessHART). This will directly influence the direction of 
travel for vendors of both sensors (e.g., ensuring the 
communication protocol is covered) and equipment (e.g., 
ensuring proper sensing coverage) to unlock value and satisfy 
operators in the resources sectors.

Step 4. Develop low-touch 
strategies that optimise for 
availability, reliability, staffing, 
and inventory
Wood has implemented several smart, low-touch strategies 
across energy and resource clients, which enable remote 
operations, while optimising for production availability, 
reliability, as well as spares and inventory, safety, and 
emissions. 

For example, gas turbines account for up to 65% of the 
emissions from an LNG plant, from liquefaction and power 
generation, and contribute to trip-related flaring, with 70% of 
flaring emissions due to non-routine and trip events. 

A 1% efficiency gain from the gas turbine fleet will reduce 
overall plant emissions by 0.7% and fuel gas usage by 1%. For 
one client, Wood configured their fleet to run closer to full 
load, with the addition of a battery to help with spinning 

Figure 4. Design the level of decision-making speed into the process to clearly understand system detail and 
requirements.
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reserve. This increased 
efficiency by 5 - 10%, and 
reduced fuel gas spend by 
the same margin. The 
company also implemented 
models that prescribe the 
optimal timing of water 
washing and filter change-
outs, and predict 
instrumentation, sensor, and 
component issues through 
predictive modelling of 
critical performance 
parameters. 

End-to-end 
system design
Figure 3 outlines a high-
level, end-to-end process 
flow, and the interfaces 
between a system engineer 
responsible for maintenance 
strategy, a diagnostic 
engineer responsible for 
equipment surveillance and 
troubleshooting, and the 
maintainer responsible for planning, scheduling, and executing 
the work. The intent is to solve for the entire process, as 
opposed to focusing on either sensors or anomaly detection 
models. 

Through both focused interviews and operational analysis, 
Wood has identified that implementing new sensor 
technology, manual monitoring techniques, and diagnostics 
will not translate into value if there are resource or parts 
availability constraints, or if clients have a large existing 
backlog of maintenance or lack effective PdM- or CBM-based 
risk and task prioritisation processes. To overcome this, the 
company provides optimised end-to-end approaches to 
managing compliance to performance standards, utilisation of 
operators and maintainers, allocation of inventory, centralised 
engineering troubleshooting efforts, and prioritisation of the 
maintenance backlog.

Step 5. Optimise end-to-end 
sensor-to-action workflows with 
the necessary objectives and key 
results 
For automated or low-touch strategies to work effectively 
and to be readily adopted within the workflow, availability, 
reliability, staffing, and inventory targets will need to be 
translated to PdM model performance and explainability to 
support the actions performed. 

The company has noted that several providers may focus 
on offering a shell platform but may not anchor on 
optimisation and maintaining high performance. This is an 
important consideration as, for example, a 5% difference in 
one performance measure, recall, could be worth 
US$3 million/y in missed equipment failures.

The resources sector has been experimenting for 
approximately the past five years on what is required to 

embed new technology such as artificial intelligence (AI; e.g. 
deep learning, deep reinforced learning, technical language 
processing) into business workflows.

Wood considers the following five AI key success 
attributes to be essential:

� Model reliability and resiliency: Essentially, whether the 
model and overall solution can be used when required. 
Upfront agreement on the entire data pipeline reliability, 
availability, and maintainability requirements will invite 
scrutiny and hardening on elements that do not meet 
expectations. This could come from the IoT sensor, the 
network connectivity, database updates, or latency issues 
in front-end refresh rates if the system is near real-time. 
Currently, most industrial wireless applications are used 
for monitoring purposes, however factoring in bridging 
requirements for open-loop or closed-loop automation 
systems and interfacing between OT/IT will highlight key 
questions in design.

zz Model explainability: The primary barriers to the uptake 
of AI techniques within the resources sector are inability 
of the models to explain their outputs and optimise 
these apart from observing more failures, which is 
contradictory to the business’ objective. Taking a hybrid 
modelling approach by combining the benefits of 
machine learning (statistical processing), with physics-
based models and codified decision logic is integral to 
industry adoption. A clear articulation of the inherent 
limitations of the model will also help clarify objectives 
and force a robust discussion with engineers on how 
best to use the solution.  

zz Model performance: This refers to the model’s ability 
to achieve and maintain a high recall (e.g., >98%), 
specificity (e.g., >90%), and computational efficiency 
under a diverse set of failure modes and scenarios. 

Table 1. Optimise end-to-end, sensor-to-action workflows with the necessary objectives and 
key results

Objective Potential key results Impact

Model is 
reliable and 
resilient

Maximise model reliability 
– able to be used when 
required (data pipeline).

99% reliability, boundary 
drawn around model.

1% reliability gain 
approximately US$1 million 
in throughput.

Model outputs 
are explainable

Not a black box. Ensure 
model outputs and form are 
explainable and logical.

>90% accurate 
prescriptive 
recommendations. 
FP/FNs are explainable.

Two to three times faster 
cycle times.

Model 
maintains high 
performance

Maintain high model 
recall, specificity, and 
computational efficiency.

Maintain >95% recall, 
>90% specificity.

5% recall gain = US$3 million 
through plant reliability.

Approximately US$10 000 
for each site investigation.

Model is 
scalable and 
flexible

Fleet-learning/master 
model approach. Easily 
integrate additional 
sensors, machines, and 
changing components.

80% of models are 
fleet-learning (e.g., 
pumps, compressors, 
conveyors, etc.)

Tag-specific approach could 
cost approximately 50 times 
more to manage.

Customer 
experience

Ensure the wide adoption 
within the business process, 
with good feedback from 
users and owners.

95% adoption for target 
audience, integration 
within key business 
process.

9+ net promoter score, 
monthly feedback.

2 - 3% reliability 
improvement. 

10 - 20% cost reduction.
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• Model specificity is set to reduce the number of false
positives which the system generates, which leads to
complacency or lack of urgency as advisory alerts are
generated and, in the worst case, leading to excessive
and wasted resource spend on field troubleshooting. 

• Model recall is set to reduce the number of false
negatives (or missed failures) that the system
generates and is the primary reason the model exists. 
For critical systems, it is necessary to focus on this
firstly, to boost confidence in the technical engineering
team’s ability to adopt this into their daily workflow. 

• It is possible to achieve extremely high scores for each
of these aspects, by making critical design decisions
on the model form. E.g., by boosting ML algorithm
selection with a series of codified decision logic, 
emulating a domain expert’s thought process, Wood
has obtained scores which far exceed traditional
neural network or black box AI approaches, with the
added advantage of the model being explainable. 

zz Model scalability and flexibility: As the solution is 
built, it is essential to ensure that the prescriptive 
maintenance framework can scale – as new sensors are 
added, more failure modes are identified, and additional 
componentry is added across the technology landscape. 
Adopting fleet-learning models is the recommended 
approach, allowing for a centralised, master model 
for an equipment type as opposed to many thousands 
of models customised to each sensor or equipment 
installation. Not only would the latter approach render 
ongoing maintenance a nightmare, but it would not take 
advantage of cross-asset learnings for failure modes, for 
example.

zz Client experience: Wood embeds key results to understand 
integration with the business processes, user adoption, and 
scaling in reference to daily, weekly, and monthly workflows, 
as well as technical standards, guidelines, and procedures – 
proof that the solution has the technical team’s sponsorship. 
For solutions configured with end-to-end automation in 
mind, six-month model reviews with human-in-the-loop 
feedback could be required for technical authority buy-in as 
engineering standards are updated to reflect this.

Step 6. Partner with specialists 
who focus on results and are 
accountable
For asset operators looking to benefit from a PdM programme, 
the right specialist solution partner can accelerate success by 
bringing proven approaches, models, and frameworks from early 
project design to continuous asset performance optimisation. 
Look for:

zz Complete capability: Ability to integrate PdM and intelligent 
asset optimisation across an asset’s lifecycle, technical 
depth on selection, evaluation, and adoption, and the 
technical competency to work with and influence technical 
authorities on technology selection, evaluation, and 
adoption within the business.

zz Flexibility in approach: The ability to influence strategy 
optimisation, configure a solution within an existing 
technology landscape, and to support staff on reliability 

improvement and defect elimination processes to solve 
engineering problems on the plant.

zz Quantitative accountability: Service-level agreements and 
commercial models that incentivise a focus on results 
(both solution use and adoption, as well as improved asset 
performance) as opposed to just upfront implementation, 
licencing, and product subscription fees. The intended 
benefits of these solutions to justify the cost and 
transformation focus needs to remain front and centre. 

Conclusion
As asset operators look to transform their organisations to 
achieve greener, more sustainable, and step-out performance, 
this six-step framework will accelerate the integration of 
new technologies in the design and implementation of 
impactful predictive maintenance at scale. 

Note
This article was based on Wood’s webinar entitled ‘Predictive 
maintenance: Towards the remotely operated, autonomous 
plant’.

https://woodplc.lpages.co/predictive-maintenance-webinar/?utm_source=lng_industry&utm_medium=article&utm_campaign=apo_webinar_pdm_22



